Reg. No. : \square

Question Paper Code : 80771

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fourth Semester
Mechanical Engineering
MA 2266/MA 1254/10177 SN 401/080120014/MA 42 - STATISTICS AND NUMERICAL METHODS

(Regulations 2008/2010)
Time : Three hours
Maximum : 100 marks
Statistical tables may be permitted.
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Define Type I and Type II errors.
2. Give two uses of Chi-square distribution.
3. State the basic principles of design of Experiments.
4. Define : RBD.
5. Compare Gauss-Jordan method with Gauss-Seidal method.
6. Write the formula and order of convergence for Newton-Raphson method.
7. Use Lagrange's formula to fit a polynomial to the data and find y at $x=1$.

$$
\begin{array}{ccccc}
X: & -1 & 0 & 2 & 3 \\
Y: & -8 & 3 & 1 & 12
\end{array}
$$

8. Show that the divided difference of second order can be expressed as the quotient of two determinants of third order.
9. Using Taylor's method, find y at $x=1.1$ given $\frac{d y}{d x}=x^{3}+y, y(1)=1$.
10. Obtain the finite difference scheme for differential equation $2 \frac{d^{2} y}{d x^{2}}+y=5$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Random samples drawn from two countries gave the following data relating to the heights of adult males. Is the difference between standard deviation significant?

Country A Country B
Mean height (in inches) $67.42 \quad 67.25$
S.D (in inches) $2.58 \quad 2.50$

Number in samples $1000 \quad 1200$
(ii) 1000 students at college level were graded according to their I.Q. and their economic conditions. What conclusion can you draw from the following data

Economic conditions
I.Q. Level

High Low

Rich	460	140
Poor	240	160

Or
(b) (i) The sales manager of a large company conducted a sample survey in states A and B taking 400 samples in each case. The results were in the following table. Test whether the average sales in the same in the 2 states at 1% level.

State A State B
Average sales Rs. 2,500 Rs. 2,200
S.D.

Rs. 400
Rs. 550
(ii) Find if there is any association between extravagance in fathers and extravagance in sons from the following data. Determine the coefficient of association also

Extrav. Sons	Under 327	741
Miser. Sons	545	234

12. (a) Analyse the following RBD and find your conclusion.

Treatments
$\begin{array}{llll}\mathrm{T}_{1} & \mathrm{~T}_{2} & \mathrm{~T}_{3} & \mathrm{~T}_{4}\end{array}$
$\begin{array}{lllll}\mathrm{B}_{1} & 12 & 14 & 20 & 22\end{array}$
$\begin{array}{lllll}\mathrm{B}_{2} & 17 & 27 & 19 & 15\end{array}$
$\begin{array}{llllll}\text { Blocks } & \mathrm{B}_{3} & 15 & 14 & 17 & 12\end{array}$
$\begin{array}{lllll}\mathrm{B}_{4} & 18 & 16 & 22 & 12\end{array}$
$\begin{array}{lllll}\text { B5 } & 19 & 15 & 20 & 14\end{array}$
Or
(b) The following is a Latin square of a design when 4 varieties of seed are being tested. Set up the analysis of variance table and state your conclusion. You can carry out the suitable charge of origin and scale. (16)
A 110
B 100
C 130
D 120
C 120
D 130
A 110
B 110
D 120 C 100
B 110
A 120
B 100 A 140
D 100
C 120
13. (a) (i) Solve the following equations by Gauss elimination method:
$x+y+z=9 ; 2 x-3 y+4 z=13,3 x+4 y+5 z=40$.
(ii) Find the dominant eigen value of $\left(\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right)$ by power method. (8)

Or
(b) (i) If $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9\end{array}\right)$, find A^{-1} by Gauss-Jordan method.
(ii) Solve the following equations by Gauss-Seidal method :
$x+y+54 z=110,27 x+6 y-z=85,6 x+15 y+2 z=72$.
14. (a) (i) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 46 .
Age $x: \quad 45 \quad 50 \quad 55 \quad 60 \quad 65$
$\begin{array}{llllll}\text { Premium } y \text { : } & 114.84 & 96.16 & 83.32 & 74.48 & 68.48\end{array}$
(ii) Find the function $f(x)$ from the following table by using Newton's divided difference formula :

$$
\begin{array}{lllll}
x: & 1 & 2 & 7 & 8 \tag{8}\\
f(x): & 1 & 5 & 5 & 4
\end{array}
$$

Or
(b) (i) Find the parabola of the form $y=a x^{2}+b x+c$ passing through the points (0,0), (1,1)(2,20) using Lagrange's interpolation formula. (8)
(ii) Evaluate $\int_{0}^{\pi} \sin x d x$ dividing into ten equal parts by using Simpson's rule.
15. (a) Use Runge-Kutta method of order 4 to find y at $x=0.1,0.2,0.3$ given that $y^{\prime}=x+y^{2}, y(0)=1$.

Or
(b) Given : $y^{\prime}=x^{2}+y^{2}-2, y(0)=1$, use Taylor's method to find y at $x=-0.1,0.1,0.2$ and Milne's method to find y at $x=0.3$.

